آشکارسازی سازنده‌ای کربناته در تاکیدی خالیز - بهبهان با استفاده از ETM+ و PCA

جکیده

آشکارسازی سازنده‌ای کربناته خصوصاً در مناطقی که در کار سازنده‌ای یکی یا گروه گرفته‌اند و سیاست‌های این است. به‌طور مثال در این تحقیق برای آشکارسازی سازنده‌ای کربناته و تخلفات سازنده‌ای کربناته و سیستمی PCA برای مدل‌سازی و تحلیل معمولی اصلی (PCA) و روش کروستا به کمک تصاویر ماهواره‌ای استفاده گردید. این مدل‌سازی و تجزیه تصاویر ماهواره‌ای برای ارزیابی این کربناته خصوصاً در مناطقی که در کار سازنده‌ای کربناته یکی یا گروه گرفته‌اند و سیاست‌های این است.

واژگان کلیدی: تصویر ماهواره‌ای ETM+, روش کروستا; تحلیل معمولی اصلی: بهبهان

مقدمه

در این مقاله، تخلفات و مطالعات مربوط با علوم زمین، استفاده از نقشه زمین‌شناسی الامواج محسوب می‌شود. تهیه نقشه زمین‌شناسی الامواج مرسوم و مفاهیم مسایل این نقشه با استفاده از مشاهدات بصری و تصویربرداری در محصولات الامواج مبتنی بر روش کاهش صورت می‌گردد. در سال‌های اخیر با پرتاب ماهواره‌های سنجش از دور و تهیه تصاویر...

43
مرز استان‌های خوزستان (شمال و شمال‌شرقی شهرستان بهبهان) و استان کهگیلویه و بویراحمد (جنوب و جنوب غربی شهرستان مهاباد) و در میان طول جغرافیایی ٥٠°، ٥٠°، ٥٠°، ٥٠°، ٥٠°، ٥٠°، ٥٠° شرقی و عرض جغرافیایی ٣٠°، ٣٠°، ٣٠°، ٣٠°، ٣٠°، ٣٠° شمالی قرار دارد.

بهبهان در بخش کوهستانی خوزستان به صورت دشتی است که در داخل ارتفاعات جنوب غربی زاگرس محصور است. کوه‌های شمالی بهبهان حداکثر ١٣٠٠ متر ارتفاع دارد که بر اساس نگرفته‌های تگیسی به دو قسمت به نام‌های گال دم و شمال غرب و خانیز در شمال شرق تقسیم می‌شود. شکل ١ نقشه زمین‌شناسی منطقه مورد مطالعه را نشان می‌دهد.

حضور در محل وقوع آنها ارایه شود. در این مطالعه از تصاویر ماهواره‌ای (TM) سنجش گردیده است.

شکل ١- نقشه زمین‌شناسی و موقعیت منطقه مورد مطالعه
پیکسل های مختلف در این فضا انجام می گیرد.

تغییرات در روشهای طبقه بندی به کاربران امکان را می‌دهد. از جمله مهمترین قابلیت‌هایی از روشهای طبقه بندی، امکان استفاده از اطلاعات غیرطیزی در آنها و تولید نتایج دقیقتر و کامل تر است. روشهای طبقه بندی را بطور مرسوم به دو (Classification Supervised) و (Classification Unsupervised) تقسیم می‌کنند. روشهای نظرات شده به اطلاعات اولیهی نظر تعداد گروه‌ها، خصوصیات آنها و همچنین مقادیر نمونه‌های معلوم از هر کلاس نیاز دارند. در مقابل روشهای نظرات نشده بیشتر خودکار هستند و به نمونه‌های معلوم نیازی ندارند و براساس مقدار خود پیکسل‌ها در مورد طبقه بندی آنها تصمیم می‌گیرند[3].

تحلیل مؤلفه اصلی

اطلاعات باندهای مجازی و توزیع تصورات چندضایی سنجش از دور بی‌گونا. همبستگی متفاوت بین باندهای مربوط به فروسرخ و مثبت بین باندهای مثبت لندست وجود دارد. وجود همبستگی بین باندهای یک تصویر چندضایی نشانگر وجود اطلاعات مشترک و به عبارتی تکرار اطلاعات است. وجود اطلاعات مشترک بصورت همبستگی مثبت آشکار می‌شود[10].

طبقه بندی تصوری

طبقه بندی را می‌توان یک فرآیند تصمیم گیری دانست که در آن داده‌های تصویری به فضای گروه‌های مشخص انتقال می‌یابند. در حقيقة طبقه بندی یک نگاشت از فضای چندضایی به فضای عوارض است[2].

فضای چندضایی را با نگاه به محدوده مختلف تصویر ایجاد می‌کند و هر پیکسل در این فضا بصورت یک بردار تعریف می‌شود که هر عضو این بردار مقدار پیکسل را در یک نیان انتخاب می‌شود[9].

در فضای چندضایی باندهای تصویری در مقابل یکدیگر قرار می‌گیرد و یک فضای چند بعدی (شبه یکیدنی) جستجو می‌شود. تصور می‌گیری طبقه بندی کننده‌ها نیز براساس طریقه قرار گیری...
کانی‌های مورد نظر تشخیص داده معمولاً از روی کروستا برای یافتن هاله های دگرگونی استفاده می‌شود و Al-OH, Fe-OH, O-H مانند شناسایی شوند. در این روش برای شناسایی Mg-OH هر گروه کانی ترکیبی خاصی از پانداها در تحلیل مؤلفه اصلی وارد می‌شوند. در این مطالعه برای آشکارسازی رس و کربنات از این روش استفاده شده است.

در بحث و پررسي

با توجه به مطالب ذکر شده در مورد ترکیب‌های کاذب، چند ترکیب رنگی کاذب از منطقه مورد مطالعه در محیط ترم‌افزار ENVI ایجاد شد. ترکیب رنگی که ایجاد شد ترکیب ۷۴۲ است که منظورهای با رنگ‌های نسبتاً طبیعی ایجاد می‌کند. برای تفسیر بصری و مقادید زمین شناسی توصیه می‌شود. (شکل ۲). ایجاد ترکیب های رنگی کاذب برای تفسیر بصری و بخصوص برای شناسایی بهتر منطقه برای تیین نمونه‌های آموزشی برای طبقه بندی نظرت شده به سیستم مفید است.

هم به جای محورهای سنتی X و Y استفاده کردم. ساختار و وضعیت داخلی اطلاعات بهتر تشخیص داده می‌شود.

می‌توان از اطلاعات در جهت محور فرعی صرف نظر کرد بودن این جسم زیادی از اطلاعات از بین برد.

این مثل نشان می‌دهد که این به ابعاد منجر توجه اطلاعات تفاوت قابل شد. جابجايی محورها به نحوی که ذکر شد دو هدف را برآورد می‌سازد: ۱- کاهش مقدار اطلاعات - ۲- اطلاعات موجود در محور اصلی بيش از اطلاعات موجود در هر کدام از محورهای X و Y است. هدف از تحلیل مؤلفه اصلی تبعیض ابعاد موجود در یک مجموعه اطلاعاتی است. یکی از اهداف دیگر آن تعریف محورهای اصلی تغییر پذیری است. این خصوصیات تحلیل مؤلفه اصلی برای فشرده کردن اطلاعات بسیار مفید است. آنچه در اینجا شاشخته اطلاعات فرض می‌شود میزان واریانس و با پراکندگی حمول میانگین می‌باشد. در تحلیل مؤلفه اصلی هدف است که در آنها میزان واریانس داده باشد (и/یا پراکندگی میزان اطلاعات بیشتر) و وابستگی بین این مؤلفه ها کمتر از حالت اولیه تصاویر می‌باشد.

روش کروستا که در سال ۱۹۸۹ توسط کروستا و مور (PCA) است. این روش در موارد نویسی تحلیل مؤلفه اصلی است. این روش را به نام "الکتاب مؤلفه اصلی پدیده گر" یکی نامید. در تحلیل مقدار بردارهای ویژه می‌توان مؤلفه اصلی که دارای اطلاعات طیفی در مورد کاتلی خاص هستند را شناسایی کرد و علاوه بر آن سهم هر کانی در مؤلفه را با توجه به پاسخ طیفی.

References

طرح بندی و ارزیابی

از میان روش‌های متنوع طبقه‌بندی تصاویر ماهواره‌ای، روش حداکثر شباهت در این مطالعه استفاده گردیده که در ادامه الگوریتم آن و نتایج حاصله ذکر می‌گردد. روش طبقه‌بندی حداکثر شباهت یک از روش‌های آماری طبقه‌بندی است که جزء روش‌های بر اساس پیکسل قرار می‌گیرد. در این روش کلاس‌های به پیکسل مورد نظر نسبت داده می‌شود که پیش‌ترین احتمال تعلق پیکسل به یک کلاس وجود دارد. این موضوع را با این صورت می‌توان گویا کرد:

\[P(x|w_i) = \frac{1}{P(w_i|X)P(x)} \]

به این معنی که پیکسل با بردار مقداری طبقه‌بندی شده به کلاس

\[j \neq i \quad x \in w_j \Rightarrow P(w_j|x) > P(w_i|x) \]

همگام با احتمال خواهد داشت اگر فاصله تعلق پیکسل به این کلاس یعنی \(P(w_i|x) \) بزرگتر از احتمال دیگر کلاس‌ها باشد. برای محاسبه این احتمالات از قانون بی‌پروتکس که نشان داده که ذکر آن از موضوع این پژوهش خارج است. پس از محاسبه اجزاء مختلف قانون به می‌توان یک بردار احتمالات \(P(w_i|x) \) تولید نمود که سرانجام بر طبق آن تصمیم‌گیری انجام خواهد شد. بنابراین الگوریتم طبقه‌بندی محاسبه این اجزاء و در نهایت مقایسه احتمالات کلاس‌های مختلف با یکدیگر می‌باشد. اولین مرحله طبقه‌بندی محاسبه احتمال \(P(x|w_i) \) است. برای محاسبه این پارامتر، توزیع احتمال کلاس‌ها بصورت توزیع نرمال چندبعده فرض و تعیین

\[47 \]

\[\text{شکل ۲- ترکیب رنگی کاوش ۱۴۵۲ از منطقه مورد مطالعه} \]
فصل‌نامه علمی، پژوهشی زمین‌شناسی و محیط زیست‌سال سوم، شماره ۴، زمستان ۱۳۸۸

کلاس‌ها برابر خواهند بود. در این مرحله تمامی اجرای قانون بی‌موجودن و می توان احتمال ثانویه را برای هر کلاس محاسبه کرد. هر چه جزئی از بردار احتمالات ثانویه بیانگر احتمال تعلق پیکسل به یک کلاس خاص است. منطقی که روش ها دارای شیب می‌گیرد منطقی است که معمولاً در زنده‌برداری به آن عمل می‌شود. علی‌رغم منطق پیش‌ترین احتمال در این روش کلاس‌ها به پیکسل‌های خواهند شد که بزرگترین احتمال را در بین احتمالات ثانویه کلاس‌ها داشته باشند. استفاده از حد آستانه در این روش طبقه‌بندی مدل‌های احتمالی است. بعضی اوقات به علت هم‌بستگی طیفی، احتمال محاسبه شده باید چند کلاس نزدیک به همی‌شود و یا مقدار بزرگتری احتمال بسیار کوچک است. در چنین حالتی نمی‌توان با اطمینان کامل کلاس مذکور را به پیکسل نسبت داد و از یک حد آستانه به عنوان کنترل استفاده می‌شود. در صورت استفاده از حد آستانه، تعدادی از پیکسل‌ها بدون برجسته‌سازی می‌شود. این معمولاً در مجموعه عملیات‌های پس پردازش این پیکسل‌ها نامعلوم یا برجسته دهی خواهند شد. استفاده از حد آستانه در مواردی که داده‌های مالوم کافی برای مرحله تعمیری وجود ندارد نمی‌توانند مؤثر بوده و از پوز حضا در نتایج طبقه‌بندی چراغ‌گیری کنند. این حد آستانه می‌تواند ثابت بوده و یا برای هر کلاس جداگانه تعیین شود.

طیف‌بندی حداکثر شباهت با استفاده از فرمول توزیع نرمال جدید بعدی سطوح تصمیم گیری را به شکل مشوره قائم (Quadratic) توصیف می‌دهد که نتیجه این سطح شکل بسیاری بیضوی و دایره نوسان داشته. این شکل

همان طور که مشخص است توزیع احتمال بصورت نرمال جنرالیستی فرض شده که به سادگی کار می‌انجامد. اکرچه ممکن است از واقعیت دور باشد. با محاسبه این احتمالات می‌توان طبقه‌بندی را انجام داد ولی اگر به‌خوبی این احتمالات جنرالیستی موجود استفاده کنیم بايد احتمالات اولیه را نیز برای طبقه‌بندی کنند. در تعيدین

می‌توان احتمال بسیار کلاس جداگانه تعيين کنيم. احتمال اولیه P(W1) را برای هر کلاس جداگانه تعیین می‌شو. معمولاً احتمالات اولیه از اطلاعات کلی که از منطقه موجود است بدست می‌آید. اگر چنین اطلاعاتی موجود نبود بايد تمامی احتمالات اولیه را مساوی فرض کرد. با مساوی فرض کردن احتمالات اولیه عملّ آثار آنها در محاسبه احتمالات ثانویه نیز از بین خواهد رفت.

بايد توجه نمود که استفاده و تعيين احتمالات اولیه دقت بسیاری مطلوب و بايد وضعیت منطقه و کلاس‌ها را در تعيين مقدار در نظر داشته. اگر احتمال اولیه کلاس‌ها به کلاس‌ها مشابه کمی اشغال کرده‌اند (مانند نحوه جزئی) حتی با وجود مطابقت با واقعیت، کوچک در نظر گرفته شود، از بین می‌روند. بنابراین توصیه می‌شود که احتمالات اولیه مساوی فرض شود و اجازه داده شود تا خصوصیات طیفی خود داده‌ها نقص اصلی را در تعيين کلاس پیکسل ها داشته باشد.

پس از محاسبه احتمال اولیه، در نهایت محاسبه احتمال باقی ماند. این پارت‌ترین نشان از نرمال‌یابی کردن P(X) احتمالات ثانویه را داده. این احتمال بدن وايستگی به کلاس خاص مربوط می‌شود و بنابراین برای تمامی
نداشتی باشد باعث ضعف مدل سازی و بروز خطای در سطح تصمیم گیری می‌شود. در این مطالعه با استفاده از قابلیت‌های نرم‌افزار ENVI تصویر منطقه مورد مطالعه با این روش طبقه‌بندی شد. در طراحی نمونه‌های تمرینی از نقشه زمین‌شناسی ۱/۰۰۰۰۰۰۰ شرکت ملی نفت ایران و بازی‌های صحرایی استفاده شد. کلاس‌های تعیین شده شامل مناطق مسکونی و سازندگی موجود در منطقه است که در شکل ۳ نتایج این طبقه‌بندی ماهیت می‌شود.

شکل ۳- طبقه‌بندی به روش حداکثر شباهت

PCA و ...
ارزیابی نتایج طبیعی بندی

کایا دقت طبقه‌بندی را نسبت به یک طبقه‌بندی کاملاً تصادفی محاسبه می‌کند. این معنی که مقدار کایا دقت طبقه‌بندی را نسبت به حالتی که یک تصویر بصورت کاملاً تصادفی طبقه‌بندی می‌شود بدست می‌آید. مقدار کایا باید به این معناست که یکی از کل کاملاً تصادفی باشد. مقدار کایا برای کایا به این معنی است که یکی از کل کاملاً صحیح و بررسی نمونه‌های گرفته شده است. برای محاسبه ضریب کایا از عناصر نظر مرطوب مطلب خطا در این دو پارامتر استفاده می‌شود. این مطلب با ماتریس احتمال ارتباطی می‌تواند و حاصل مقایسه بیکسل‌های پیکسل‌های مربوط به یک کلاس خاص در واقعیت زمینی درست باشد. به معنی دیگر این عدد پیکسل احتمال این است که طبقه‌بندی کننده پیکسل‌های کلاس خاص نسبت به داده‌هایی که در صورتی که کلاس واقعی آن مشخص باشد [7] مبتنی صورت نسبت عناصر قطعی یک کلاس به جمع مقارن متغیر (هرکلاس) معادل دقت تولیدکننده خواهد بود. دقت کاربری پیکسل‌ها احتمال طبقه‌بندی یک کلاس خاص مطلق با یک همان کلاس در نقشه واقعیت زمینی می‌باشد. نیاز به این دقت کاربری معادل نسبت پیکسل‌های صحیح طبقه‌بندی شده به مجموع پیکسل‌های یک سطح کلاس) می‌باشد. در جدول ۱ و ۲ این ضریب کایا برای مطالعه حاضر آمده است.
تحلیل مؤلفه‌ها و روش کروستا

لیست مؤلفه‌های اصلی مجموعه تصاویر چند ثانیه‌ی با روش جبر خطی پدست می‌آید. پردازش ماتریس واریانس-کوواریانس (S) و ماتریس همبستگی (ρ) به‌عنوان محسوبه می‌شود. با توجه به اینکه ρ باند خود داشته باشد، هر کدام از ماتریس‌های متقابل ρ و S مناسب می‌باشد.

مقدار آی از کمیت‌ها که مقدار ویژه (Eigenvalue) می‌باشد، می‌شوند با استفاده از جبر خطی محاسبه می‌شود.

مقدار ویژه طول محتوای اصلی پیش‌گزار را پدست می‌دهد که شکل آن با S و I تعریف می‌شود. مقدار ویژه صورت واحدهای واریانس محاسبه می‌شود.

با یک از مقدار ویژه مختصاتی وجود دارد که جهت محورهای اصلی را مشخص می‌کند. این مختصات را بردار ویژه ماتریس S و I می‌نامند: بنابراین مقدار ویژه بردار ویژه طول و جهت را تعریف می‌کند. در واقع اطلاعات تصویری مقياس بندي و چرخانده می‌شود که محورهای اصلی تبدیل به سیستم مختصاتی شود که تحت آن مؤلفه‌های اصلی تصویر آرا به می‌شوند.

بردار ویژه که از ریشه دوم مقدار ویژه مربوط به تغییرات شکل، می‌باشد. می‌توانند به عنوان همبستگی بین مؤلفه‌های اصلی درصدی از تغییرات ثابت باشند. این همبستگی ها در تفسیر مؤلفه‌های اصلی استفاده می‌شوند. مؤلفه‌های اصلی از روی بردارهای ویژه محاسبه می‌شوند.

مقدار ویژه مؤلفه‌ی پیک، ضرایب را پدست می‌دهد که در انتخاب اولین تصور مؤلفه‌ای از تصویر خام استفاده می‌شود. برای نمایش تصور مؤلفه‌ای اصلی در کامپیوتر با پیدا این مقدارهای ارزش‌های بین 0-255 تبدیل می‌شوند.

جدول 1 تعداد و درصد پیکسل‌های جایگزین و ادغام شده در هر کلاس

<table>
<thead>
<tr>
<th>Class</th>
<th>Commission (Percent)</th>
<th>Omission (Percent)</th>
<th>Commission (Pixels)</th>
<th>Omission (Pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>2.45</td>
<td>0.00</td>
<td>6.245</td>
<td>0.239</td>
</tr>
<tr>
<td>Vegetation</td>
<td>1.68</td>
<td>6.58</td>
<td>98.5834</td>
<td>498.6140</td>
</tr>
<tr>
<td>Gachuran F.</td>
<td>5.06</td>
<td>15.84</td>
<td>64.1265</td>
<td>226.142</td>
</tr>
<tr>
<td>Asmari F.</td>
<td>36.94</td>
<td>18.15</td>
<td>380.758</td>
<td>106.58</td>
</tr>
<tr>
<td>Mishan F.</td>
<td>32.44</td>
<td>22.34</td>
<td>364.1122</td>
<td>218.97</td>
</tr>
<tr>
<td>Aghajari F.</td>
<td>8.48</td>
<td>30.62</td>
<td>119.1404</td>
<td>557.185</td>
</tr>
<tr>
<td>Allevium</td>
<td>2.72</td>
<td>6.65</td>
<td>34.1252</td>
<td>84.130</td>
</tr>
<tr>
<td>River</td>
<td>5.00</td>
<td>2.56</td>
<td>4.80</td>
<td>2.78</td>
</tr>
<tr>
<td>Bakhtiari</td>
<td>61.65</td>
<td>7.83</td>
<td>246.399</td>
<td>13.166</td>
</tr>
<tr>
<td>Labhari</td>
<td>53.58</td>
<td>4.23</td>
<td>157.293</td>
<td>6.142</td>
</tr>
<tr>
<td>Pabdeh</td>
<td>15.95</td>
<td>5.84</td>
<td>52.326</td>
<td>17.291</td>
</tr>
<tr>
<td>Gurpi</td>
<td>53.50</td>
<td>8.04</td>
<td>219.443</td>
<td>18.224</td>
</tr>
</tbody>
</table>

جدول 2 تعداد پیکسل و درصد دقت طبقه بندي به تفکیک کلاسهای مورد طبقه بندي

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>239.245</td>
<td>97.55</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>5736.5834</td>
<td>98.32</td>
<td>93.42</td>
<td></td>
</tr>
<tr>
<td>Gachuran F.</td>
<td>1201.1265</td>
<td>94.94</td>
<td>84.16</td>
<td></td>
</tr>
<tr>
<td>Asmari F.</td>
<td>478.758</td>
<td>63.06</td>
<td>81.85</td>
<td></td>
</tr>
<tr>
<td>Mishan F.</td>
<td>206.443</td>
<td>46.50</td>
<td>77.66</td>
<td></td>
</tr>
<tr>
<td>Aghajari F.</td>
<td>1285.1404</td>
<td>91.52</td>
<td>69.38</td>
<td></td>
</tr>
<tr>
<td>Allevium</td>
<td>1218.1252</td>
<td>97.28</td>
<td>93.55</td>
<td></td>
</tr>
<tr>
<td>River</td>
<td>76.80</td>
<td>95.00</td>
<td>97.44</td>
<td></td>
</tr>
<tr>
<td>Bakhtiari</td>
<td>153.399</td>
<td>38.35</td>
<td>92.17</td>
<td></td>
</tr>
<tr>
<td>Labhari</td>
<td>136.293</td>
<td>46.42</td>
<td>95.77</td>
<td></td>
</tr>
<tr>
<td>Pabdeh</td>
<td>274.326</td>
<td>84.05</td>
<td>94.16</td>
<td></td>
</tr>
<tr>
<td>Gurpi</td>
<td>758.1122</td>
<td>67.56</td>
<td>91.96</td>
<td></td>
</tr>
</tbody>
</table>
چهره باند از تصویر به جای هفت باند مرسوم استفاده
در جداول (۳، ۴ و ۵) آمده است.

ترکیبات خاص کانی شناسی است[۵].

جدول ۳- مقادیر کواریانس باندهای ۷ گانه در منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>Covariance</th>
<th>Band1</th>
<th>Band d</th>
<th>Band3</th>
<th>Band4</th>
<th>Band5</th>
<th>Band6</th>
<th>Band7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band1</td>
<td>1838.30</td>
<td>1389.64</td>
<td>1253.33</td>
<td>806.16</td>
<td>873.79</td>
<td>275.25</td>
<td>1083.59</td>
</tr>
<tr>
<td>Band2</td>
<td>1389.64</td>
<td>1298.96</td>
<td>1211.80</td>
<td>817.62</td>
<td>847.12</td>
<td>258.86</td>
<td>1023.25</td>
</tr>
<tr>
<td>Band3</td>
<td>1253.33</td>
<td>1211.80</td>
<td>1224.76</td>
<td>857.29</td>
<td>899.28</td>
<td>317.34</td>
<td>1029.13</td>
</tr>
<tr>
<td>Band4</td>
<td>806.16</td>
<td>817.62</td>
<td>857.29</td>
<td>854.17</td>
<td>725.15</td>
<td>102.55</td>
<td>745.23</td>
</tr>
<tr>
<td>Band5</td>
<td>873.79</td>
<td>847.12</td>
<td>899.28</td>
<td>752.15</td>
<td>986.39</td>
<td>351.70</td>
<td>1037.78</td>
</tr>
<tr>
<td>Band6</td>
<td>275.25</td>
<td>258.86</td>
<td>317.34</td>
<td>102.55</td>
<td>351.70</td>
<td>1587.45</td>
<td>359.58</td>
</tr>
<tr>
<td>Band7</td>
<td>1083.59</td>
<td>1023.25</td>
<td>1029.13</td>
<td>745.23</td>
<td>1037.78</td>
<td>1587.45</td>
<td>1291.02</td>
</tr>
</tbody>
</table>

جدول ۴- میزان کرویلیشن باندهای ۷ گانه در منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Band</th>
<th>Band d</th>
<th>Band</th>
<th>Band</th>
<th>Band</th>
<th>Band</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band1</td>
<td>۱.۰۰</td>
<td>۰.۹۰</td>
<td>۰.۸۳</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
<td>۰.۱۶</td>
<td>۰.۷۰</td>
</tr>
<tr>
<td>Band2</td>
<td>۰.۹۰</td>
<td>۱.۰۰</td>
<td>۰.۷۸</td>
<td>۰.۷۸</td>
<td>۰.۷۵</td>
<td>۰.۱۸</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>Band3</td>
<td>۰.۸۳</td>
<td>۰.۹۶</td>
<td>۱.۰۰</td>
<td>۰.۸۳</td>
<td>۰.۸۱</td>
<td>۰.۲۳</td>
<td>۰.۸۲</td>
</tr>
<tr>
<td>Band4</td>
<td>۰.۶۴</td>
<td>۰.۷۸</td>
<td>۰.۸۳</td>
<td>۱.۰۰</td>
<td>۰.۷۹</td>
<td>۰.۰۹</td>
<td>۰.۷۱</td>
</tr>
<tr>
<td>Band5</td>
<td>۰.۶۵</td>
<td>۰.۷۵</td>
<td>۰.۸۱</td>
<td>۰.۷۹</td>
<td>۱.۰۰</td>
<td>۰.۲۸</td>
<td>۰.۹۲</td>
</tr>
<tr>
<td>Band6</td>
<td>۰.۱۶</td>
<td>۰.۱۸</td>
<td>۰.۲۳</td>
<td>۰.۹۰</td>
<td>۰.۲۸</td>
<td>۱.۰۰</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>Band7</td>
<td>۰.۷۰</td>
<td>۰.۷۹</td>
<td>۰.۸۲</td>
<td>۰.۷۱</td>
<td>۰.۹۲</td>
<td>۰.۲۵</td>
<td>۱.۰</td>
</tr>
</tbody>
</table>

جدول ۵- مقادیر ویژه باندهای ۷ گانه منطقه مورد مطالعه

<table>
<thead>
<tr>
<th>Eigenvector</th>
<th>Band</th>
<th>Band d</th>
<th>Band</th>
<th>Band</th>
<th>Band</th>
<th>Band</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band1</td>
<td>۰.۴۸</td>
<td>۰.۴۳</td>
<td>۰.۴۳</td>
<td>۰.۳۱</td>
<td>۰.۳۵</td>
<td>۰.۱۴</td>
<td>۰.۴۱</td>
</tr>
<tr>
<td>Band2</td>
<td>۰.۱۴</td>
<td>۰.۱۱</td>
<td>۰.۰۵</td>
<td>۰.۱۲</td>
<td>۰.۰۶</td>
<td>-۰.۹۷</td>
<td>-۰.۰۳</td>
</tr>
<tr>
<td>Band3</td>
<td>-۰.۶۵</td>
<td>-۰.۲۳</td>
<td>-۰.۰۲</td>
<td>۰.۲۹</td>
<td>۰.۴۹</td>
<td>-۰.۱۲</td>
<td>۰.۴۳</td>
</tr>
<tr>
<td>Band4</td>
<td>-۰.۲۹</td>
<td>۰.۱۷</td>
<td>۰.۳۳</td>
<td>۰.۶۵</td>
<td>-۰.۱۷</td>
<td>۰.۱۰</td>
<td>-۰.۵۶</td>
</tr>
<tr>
<td>Band5</td>
<td>-۰.۴۷</td>
<td>۰.۴۷</td>
<td>۰.۴۷</td>
<td>-۰.۴۸</td>
<td>-۰.۲۶</td>
<td>-۰.۰۴</td>
<td>۰.۱۷</td>
</tr>
<tr>
<td>Band6</td>
<td>۰.۰۲</td>
<td>-۰.۰۹</td>
<td>۰.۳۰</td>
<td>-۰.۳۸</td>
<td>۰.۶۸</td>
<td>-۰.۰۶</td>
<td>-۰.۵۳</td>
</tr>
<tr>
<td>Band7</td>
<td>۰.۱۴</td>
<td>-۰.۷۰</td>
<td>۰.۶۳</td>
<td>-۰.۰۱</td>
<td>-۰.۲۶</td>
<td>-۰.۰۱</td>
<td>۰.۱۶</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
با توجه به مطالب عنوان شده و دقت طبقه‌بندی بدست‌آمده در این پژوهش، می‌توان نتیجه‌گیری کرد که برای نهای شیمی‌دان و آشکارسرای سازنده‌های کربنات و تفکیک آنها از سازنده‌های رمسی و سایر کاربردها در علم زمین از تصاویر ماهواره‌ای می‌توان به خوبی استفاده نمود. امتیازات این روش نسبت به روش استفاده از عکس های ماهواره به شرح ذیل است: افزایش قدرت تشخیص و تفکیک پدیده‌ها افزایش یافته در این روش می‌توان تصویر رنگی کاذب ایجاد نمود که باعث تصویر به‌هدر می‌گردد، در حالیکه عکس‌های ماهواره معمولاً سپاه و سفید هستند و عکس‌های رنگی نیز انعطاف‌پذیری تصویر ماهواره‌ای را ندارد، ج) در روش تصویر ماهواره‌ای می‌توان برخی اطلاعات را با تکنیک‌های سنجش از دور مانند اعمال فیلتر و طبقه‌بندی تصویر بطور خودکار استخراج نمود. همچنین جداول دقت ارزیابی نشان می‌دهد که دقت طبقه‌بندی سازنده‌های آسیایی گریه و بخیه‌ای کمتر از سایر سازنده‌ها می‌باشد که در این مقاله به بررسی و نتیجه‌گیری نشان داده شده است.}

منابع
1- زنگنه، ج. و شهریاری، ح. (1385)، مقایسه داده‌های ETM3 و سنجشگر ASTER برای نقشه‌برداری مناطق گرمسایی در بخش مرکزی کمربند دهم- ساردویه استان کرمان، نشریه بلورسانسی و کانی شناسی ایران، شماره 14، ص 32-37.
2- زهرتیان، غ، علی‌پناه، سک و. و احسانی، ا. ه. (1382)، بررسی و تفکیک خاک‌های خاکی‌پا با استفاده از داده‌های رم نماهجو، نشر 7 (مطالعه‌پذیری: پلاژیا) دانشگاه، مجله پژوهش و سازندگی، شماره 88، ص 38-60.
3- دری‌میان، ف.، سرمهدان، ف.، علی‌پناه، ک. و هک ریچارد. (1382)، میزان نوع کاربری و وضوح اراضی بویلند های نولدست 7 (ETM) با استفاده از روش برگر (محدوده اکتشاف خودکار) نتایج بیشتری در فضای تحقیقات مرجع و بیانی ایران، شماره 4، ص 589-602.
4- نعیمی قصابیان، ن. (1384)، کازبرد روشن آستن و سنجشگر ASTER در بازسایی واحدهای گرمسایی در منطقه جنوبی خاک‌پا (محدوده اکتشاف). بیست و دویم همکاری علمی علوم زمین سازمان زمین شناسی کشور، تهران، ص 264-279.
5- هرمنی، م.، زنگنه، ج. و کازبرد روشن‌باای نهای عظیم (1384)، بررسی تصویر تشکیل‌دهنده ETM به منظور اكتشاف کازبارداشی طبیعی و رگه‌ای در منطقه کوه مسی و کوه‌پی در استان کرمان، مجله علوم زمین، شماره 4، ص 110-117.
6- علی‌پناه، سک و. و بارونی، م. (1384)، ارتباط ساختاری، چین خوردن به شکل شریفتی تنوع و تکامل اکتشاف زمین و راز استفاده از تصاویر ماهواره ای پژوهش‌های رادار TM، ETM+ و JFVI، شماره 51، ص 38-83.

